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FOREWORD 

This i s  a technical report of a study conducted by the Electrical 

Engineering Department of Auburn University under the auspices of 

Acbcm Research Powidation toward the fuir'ii'iment of the requirements 

prescribed i n  NASA Contract W8-11251. 
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ABSTRACT 

Elec t ron ica l ly  scanned antennas have become q u i t e  popular i n  

These antennas usua l ly  c o n s i s t  of a la rge  a r ray  of r ecen t  years.  

c l c s e b  spaced. elements. Fie t o  the close spacing between the elements, 

coupling becomes important. Thus, one must examine the inf luence of 

mutual coupling i n  order t o  predict  t he  f e a s i b i l i t y  of an e l ec t ron ic  

scanning ar ray .  

This r e p o r t  p resents  an  ana lys i s  of t he  e f f e c t s  of mutual coupling 

on a 36 element, square a r r ay  of crossed s l o t s  i n  an e l e c t r i c a l l y  la rge  

ground plane.  The study w a s  made by computing the  mutual admittance 

between t h e  s l o t s  and so lv ing  the  simultaneous equations f o r  a model 

a r r ay  of p a r a l l e l  s l o t s  t o  obtain t h e  terminal vol tage  and phase of 

each element. These parameters were tabula ted  f o r  f i v e  representa t ive  

point ings of the a r ray .  

Since the  a r r ay  p a t t e r n  is propor t iona l  t o  the  vol tages  along 

the  s l o t ,  and the  r e l a t i v e  phase of each s l o t ,  it i s  a simple 

matter t o  c a l c u l a t e  the  a r r a y  p a t t e r n  with the  a i d  of a computer. 

These p a t t e r n s  w e r e  p l o t t e d  for t he  r ep resen ta t ive  poin t ings ,  

and coincide very c lose ly  t o  those i n  which mutual coupling was 

neglected.  

The a r r ay  ga in  was ca lcu la ted  f o r  t h e  var ious point ings.  It was 

found t o  vary with d i r e c t i o n  of beam poin t ing ,  however, it does not  

iii 



decrease by more than two decibels  with respec t  t o  the  a r ray  ga in  

ca l cu la t ed  with the  mutual coupling neglected. 

Therefore,  one may conclude t h a t  the  scanning c a p a b i l i t i e s o f  

the  36 element a r r a y  of crossed s l o t s  w i l l  not be ser ious ly  a f f ec t ed  

by mutual coupling between antenna elements. 
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I. INTRODUCTION 

W. F. Eiayes, J. E. Tiliman, E. R. Graf 

Tracking antennas used i n  conjunction wi th  space vehic les  and 

a r t i f i c i a l .  e a r t h  s a t e l l i t e s  have become q u i t e  important i n  recent  

years .  

pose. The narrow beam may be sh i f t ed  by moving the  dish.  This and 

s imi l a r  techniques accomplish the task  but  have the disadvantage of  

requi r ing  the  usua l ly  large mass of the antenna t o  be mechanically 

moved by electric motors. 

Often a scanned parabolic d i sh  antenna i s  used f o r  t h i s  pur- 

In recent  years ,  e l ec t ron ic  scanning antennas have been used 

successful ly .  

the presence of an operator.  The antenna cons i s t s  of a number of 

i d e n t i c a l  elements i n  which the beam i s  s h i f t e d  by varying the input 

phase o r  amplitude t o  the individual  elements. The f i e l d  p a t t e r n  i s  

obtained by mul t ip l i ca t ion  of the p a t t e r n  of each ind iv idua l  element 

and t h a t  of t h e  a r r ay  i n  which t h e  elements a r e  located.  

These do not requi re  the movement of t h e  antenna nor 

Since the  beam i s  t o  be moved through the e n t i r e  hemisphere i t  

i s  des i r ab le  f o r  each element t o  have a hemispherical  r a d i a t i o n  

pa t t e rn .  This prevents the f i e l d  maximum from varying a s  the  beam 

i s  scanned through the  hemisphere. 

The ob jec t  of t h i s  r e p o r t  i s  t o  evaluate  the usefulness  of a 36 

element square a r r ay ,  using crossed s l o t s  f o r  a r r ay  elements,  a s  an 
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e l e c t r o n i c a l l y  scanned tracking antenna. 

near ly  hemispherical  p a t t e r n  and the  r e s u l t a n t  beam may be scanned 

through the  e n t i r e  hemisphere by means of t h i r t y  f i v e  d i g i t a l  phase 

s h i f t e r s .  These a r e  capable of s h i f t i n g  phase i n  22.5' increments 

from Oo to  360°. 

may e a s i l y  be determined by negiect ing the  e f f e c t s  of mutua1 coupling 

and p l o t t i n g  the  a r r ay  pa t te rn .  Since the  elements a r e  c l o s e l y  

spaced i t  i s  obvious t h a t  t he  a r ray  elements are coupled;  therefore ,  

i t  becomes necessary t o  examine t h e  e f f e c t s  of mutual coupling on the  

a r r a y  p a t t e r n  and gain.  

admittance between each element and s e t t i n g  up the  l i n e a r  simultaneous 

equat ions t o  y i e l d  the a c t u a l  voltage magnitude and phase inc ident  

upon each element. Having solved these  equat ions the a r r ay  p a t t e r n ,  

including the  e f f e c t s  of mutual coupl ing,  i s  p l o t t e d  and compared t o  

that  of the t h e o r e t i c a l  pa t t e rn  f o r  uncoupled elements. 

The crossed s l o t  produces a 

The p o s i t i o n  of t he  beam f o r  each phase v a r i a t i o n  

This is accomplished by ca l cu la t ing  the  mutual 



11. ANALYTICAL DEVELOPMENT 

Mutual m e d a n c e  Between Dipoles 

Since the  s l o t  i s  t h e  dual of a dipole  i t  i s  advantageous t o  

de r ive  t h e  mucuai impedance between dipoles  and, using t h e  dua l i t y  

p r i n c i p l e ,  ob ta in  an  expression f o r  the  mutual admittance between s l o t s .  

I n  order  t o  a r r i v e  a t  a n  expression f o r  t he  mutual impedance 

between dipoles ,  f i r s t  consider t he  self  impedance of a s i n g l e  dipole  

as shown i n  Figure 1. Assuming a s inuso ida l  cu r ren t  d i s t r i b u t i o n  

I(z) = I p o s ( k z ) ,  t he  complex power t o  t h e  antenna is  given by 

Pc = jvTIT*] 

o r  

1 

where + i s  t h e  terminal  impedance of t h e  dipole.  

power may a l s o  be expressed as the i n t e g r a l  of t he  average complex 

Poynting vector ,  < s >p,over thesu r face  , t h i s  may be w r i t t e n  

The complex input  

- 

3 



4 

Fig.  1 - - A  h a l f  wavelength d ipole  
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where 

1, < T > p  = , E x G * .  

A t  t h e  sur face  of t h e  d ipole  the  average Poynting vector  becomes 

From Ampere's l a w  

J E - 3  = I. 

Taking a c losed  contour around t h e  sur face  of t he  d ipole  y i e l d s  

2n . 

H@(z) ad@ = Iz (z) ,  s 
0 

thus , 

I T C O S  (k2) 
H@(z) = 2na 

Subs t i t u t ing  (8) i n t o  (5) y ie lds  

a t  t h e  sur face  of t h e  d ipole .  

Using equat ion (3) and (9), t he  complex power i s  given by 

(4) 

(7) 
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Evaluating E,(z) a t  the  surface of t he  dipole  y i e l d s  

A 1 4  2n 

Pc = -l r EZ(z> IT*cos(kz) 
J ad@ dz 

4na -A14 0 

or 
hl 4 

p = -  2* 
C 2 

EZ(z) cos (kz)dz 

- A / 4  

f o r  t he  complex power. 

Comparing equation. (12) t o  (2) the impedance of t h e  dipole  i s  immedi- 

a t e l y  obtained as 

h/4  

z* = - -  E,(z) cos(kz)dz. 
IT 

- AI4 

I f  -0, t h e  e l e c t r i c  f i e l d  i n t e n s i t y  is  given by 

-jkrbll 

IT7 [ e-jk'tl + e 

4n 
E,(z) = - j - 

-1 r b l  

where rt 

of f r e e  space. 

then becomes 

= 114 - z ,  r b l  = XI4 + z and 7 i s  the  i n t r i n s i c  impedance 
1 

The expression f o r  t h e  terminal  impedance of a d ipo le  

8 
1 
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h / 4  

cos(kz)dz. 1 z, = a  s[. - j k r  tl + e-jkrbl 

rtl  r b l  
4rr 

- h/4  

Consider two coupled dipoles as shown i n  Figure 2. Again assume 

a s inusoida l  cu r ren t  d i s t r i b u t i o n  along the  ha l f  wave length antennas. 

Le t  the rad ius  of each d ipole  approach zero and assume i d e n t i c a l  dipoles  

Since the  system i s  l i n e a r  the 
21- 

such that Zll = Z22 and Z12 = 2 

r e l a t ionsh ip  between the currents  and vol tages  may be represented by 

the following simultaneous equations: 

and 

v2 = 11z21+  12z22. 

Let t ing  V1 = V2 = V,, y i e l d s  I1 = I2 = Is. 

equations one obta ins  

Solving the  simultaneous 

vs = IS(Zll + z121, 

o r  

vs = 

where the  symmetrical impedance, Z,, i s  given by 
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-7- 
c b 

Fig. 2--A two element array of half-wavelength dipoles 
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In a similar manner letting V = - V2 = Va, and thus I1 = - 12 = I,, 
1 

equation (16) yields 

iaZa, -T v =  a 

where the antisymnetrical impedance, Za, is given by 

za = 211 - 212. 

Simultaneous solution of equations (19) and (21) gives the mutual 

impedance between the two dipoles in terms of the symmetrical and 

antisymmetrical impedances as 

212 

Obviously 2, is the isolated impedance of each dipole when they are 

fed identically. From (13) one obtains 

(20) 

E, (2) cos (kz) dz , 'S IS - 2, - - 
- x /4  

where E=(,) is due to the currents on both antennas. This electric 

field intensity is given by 
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- jkrt ‘jkrbl -jkrt2 + e-jkrb2 
+ e  jqI, [e 1 + e  E,(z) = - 

tl lTbl rt2 rb2 
r 4n 

are defined in Figure 3.  For parallel 
b2 

where rt 1s r t2) rbl~ and * 
dipoles, these quantities are given by 

rtl = A I 4  - z 

d2 + (b + h/4 - ~)2, 

2 d2 + (b - XI4 - z) . Ieb2 

Inserting E,(z) into Z, the symmetrical impedance becomes 

r,e-j:;tl - j krb 
z , =  j L  r + e  ] cos(kz)dz 

4n 

t2 + e-jkrb2 ] cos(kz)dz. 
r 

t2 b2 
r 

-A I 4  

Following the same procedure the antisymmetrical impedance becomes 
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X 

2 '  F i g .  3--A general d ipole  array defining rt-, r b l ,  rt2 and rb 
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-jkrb 
za=j2.;; l + e  '1 cos(kz)dz 

-h/4 rbl 

cos(kz)dz. 1 - m b 2  
+ e  

-A. I4 rb2 

Substitution of (26) and (27) into (22) yields 

This is the desired expression for the mutual impedance between dipoles. 

Mutual Admittance Between Slot-Antennas 

Having derived the mutual impedance between dipoles the duality 

principle may be used to obtain the mutual admittance between 

parallel slots in an infinite ground plane. 

between slots and dipoles may be stated as follows: 

The duality principle 

If an e.m.f. of frequency f is applied to an ideal slot antenna 
- 

from an arbitrary source, the electromagnetic field vectors E and 

in the slot and the space surrounding the slot will have the same 

directions and will be the same functions of the space co-ordinates as 
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the  d i r ec t ions  and the  functions of the  vectors  

of t h e  electromagnetic f i e l d  of a d ipole  cons is t ing  of an  idea l ly-  

conducting, i n f i n i t e l y  t h i n  p l a t e ,  located i n  f r e e  space and having the  

same shape and dimensions as the s l o t  when an e.m.f. of t h e  same 

and E, respec t ive ly ,  

frequency i s  appl ied t o  the  p l a t e  a t  corresponding poin ts .  L 

The dua l i ty  p r inc ip l e  a l l o w s  one t o  obta in  an expression f o r  H, 

as given below 

where r 

observes t h a t  t h i s  is e x p l i c i t l y  t r u e  only i f  t he  s l o t  and d ipole  

have the  s a m e  geometric shape. However, i n  t h i s  case a c y l i n d r i c a l  

and rbl are t h e  same as t h a t  i n  the  d ipole  solut ion.  One tl 

dipole  i s  assumed t o  be the  dual of a rec tangular  s l o t .  I n  addi t ion  

both the  s l o t  and the  d ipole  have been assumed i n f i n i t e l y  th in .  Both 

of these  assumptions introduce l i t t l e  e r r o r  and may be neglected.  

The mutual admittance between s l o t s  may be obtained by the  method 

used t o  ob ta in  t h e  mutual impedance between dipoles .  Thus, it is  again 

necessary t o  f i r s t  ob ta in  t h e  s e l f  admittance of a s i n g l e  s l o t  and 

use t h a t  t o  ob ta in  t h e  mutual admittance between coupled s l o t  antennas. 

Assuming a s inusoida l  vol tage d i s t r i b u t i o n  along the  s l o t  shown 

i n  Figure 4 t h e  electric f i e l d  i n t e n s i t y  i n  the  s l o t  i s  given by 
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ground plane. 

4--A half wavelength s l o t  in an electrical ly  large 
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where V is the terminal voltage of the s l o t ,  Now the average complex 

power becomes 

(3i) 

where 

Equation (31) may a lso  be wri t ten 

i s  normal t o  and directed outward from the plane of the  s l o t .  

cos(kz)HZ*(z)n (32) 

In tegra t ing  (32) over the t o t a l  surface of the s l o t  the  complex power 

is given as 

114 

Hz* ( z )  cos (kz) dz . s Pc = - v  

- A I 4  

(33) 

I f  the  s l o t  is  cavi ty  backed, the complex power is  halved due t o  the 

halving of the physical aperture,  thus 

A14 

p = -  [ Hz*(z) cos(kz)dz. 
C 2 

- AI4 

The complex power may a l s o  be expressed a s  

Pc = 112 VTVT*YT. 

(34) 

(35 j 
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Combination of (34 )  and (35) yields 

I .  
and by substituting (29) into the above expression the self ad- 

mittance of a cavity backed slot may be written as 

For the case of two coupled slots the linear simultaneous equations 

are 

11 = YllVl + y12V2 

I2 = Y12V1 + Y22V2. 

Again the use of symmetrical and antisymmetrical inputs yields 

ys = y11 + y12 

ya = yll - 5 2  

and 
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and thus  

Y12 = 1/2(Ys - Ya) . 

It i s  obvious t h a t  Y, i s  the  i so l a t ed  admittance of each s l o t  

when symmetrically f e d  From equation (36) 

h I4 [ % ( z )  cos(kz)dz. Y, - - -- 1 

vs - i f4  

H,(z) is  due t o  t h e  vol tages  along each s l o t  antenna and i s  given by 

rbl ,  and r The q u a n t i t i e s  rtl, rt2, 

d ipole  so lu t ion  and are Shawn i n  Figure 3. 

t h e  symmetrical admittance i s  given by 

a r e  the  same as those f o r  the 

Inse r t ing  H,(z) i n t o  Y, 
b2 

cos (kz) dz . 1 t2 - m b 2  
+ e  

r 
'A IL (  -I 11. b:, 
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Simarily, &e antisymmetrical admittance may be obtained and used 

in (40) to yield 

(44 ) 

Equation (44 )  gives a general expression for the mutual admittance 

between cavity backed half wave length slots. It is obvious that 

equation (44)  will be valid for any slot length if the integration 

limits are altered accordingly. Also, by comparing (28) and ( 4 4 )  

one notices that the mutual admittance between slots takes the same 

form as the mutual impedance between dipole antennas. This implies 

that any general results obtained by employing crossed slot elements 

in the array will hold equallywell if crossed dipoles are used as 

antenna elements. 

Method of Pattern Analysis 

In an attempt to analyze the effects of mutual coupling on the 

field pattern and gain of the array, one must first know the value of 

the mutualadmittances. As has been shown, the expression for the 

mutual admittance is given by 

h 14 

cos(kz)dz 1 Y12 = - + e  
r 
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where r and rb are shown in Figure 3, Obviously the integral 
t2 2 

cannot be directly evaluated. It becomes necessary to change the 

expression to a more useful fora. By Euler's identity 

-jkrt2 
e = cos(krt ) - jsin(kr ) 2 t2 

and (45 1 

-jkrb2 
e = cos(kr 1- jsin(krb ). 

b2 2 

Making these substitutions the mutual admittance becomes 

XI4 

- AI4 -2 rb2 

Although the expression for the mutual admittance still maynot 

be integrated by straightforward means, it may easily be numerically 

integrated by a computer with Simpson's 113 rule of integration. 

Simpson's rule may be expressed as follows: 

b 
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where n i s  always even and i s  the number of subin terva ls  i n  the  in-  

t e r v a l  from a t o  b. 

sub in te rva l s  chosen and i s  increased as n i s  increased. 

The accuracy i s  dependent upon the number of 

A f t e r  determining the  mutual admittance the  next s t e p  i s  t o  

examine the  simultaneous equations represent ing  the  vol tage and 

current relztionships of the  slots. To a m l y z e  the a f f e c t s  of r??utual 

coupling on the  a r r ay  p a t t e r n ,  cons tan t  cu r ren t  inputs  may be assumed 

and the  simultaneous equations solved t o  obta in  the  terminal vol tage 

of  each s l o t .  For t h e  6 x 6 a r ray  of crossed s l o t s ,  72 simultaneous 

equat ions must be solved f o r  the  72 vol tages .  Clear ly  one would not 

wish t o  solve these equat ions without a computer. 

necessary t o  change the  simultaneous equations i n t o  a formwhich may 

r e a d i l y  be solved using computer techniques.  

It i s  therefore  

Consider t he  equations represent ing two s l o t s ,  namely 

Since I, Y ,  and V a r e  complex numbers i t  i s  necessary t o  sepe- 

r a t e  the  r e a l  p a r t  from the  imaginary. 
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Expanding these equations and setting the real parts equal and the 

These equations may be changed to matrix form as 

The simult 

- 
Gll 

B1l 

G21 

B21 - 

ous u 

-B 11 612 

g11 B12 

-B21 G22 

G2 1 B22 

tions represen d by matrix quation (51) 

may easily be solved on a computer by inverting the augmented matrix. 

Due to limited computer memory and accumulated round off error the 

computer available will not invert a matrix larger than 90 x 90. 

the thirty six element array of crossed-slots the resulting matrix 

is 144 x 144, thus some approximations must be made in order to reduce 

the size of the matrix. Tomake this reduction, consider four elements 

For 
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of t h e  a r r ay  as shown i n  Figure 5. 

between the  s l o t  indicated by the  s o l i d  l i n e  of element one and each 

o the r  element. The coupling due t o  t h e  s l o t  indicated by the  dashed 

F i r s t  examine t h e  mutual coupling 

l i n e  of element one i s  zero. Also the  coupling due to  each perpendi- 

c u l a r  (dashed l i n e )  s l o t  i s  negl ig ib le  when compared t o  the  coupling 

of each corresponding p a r a l l e l  ( s o l i d  l i ne )  s l o t .  A v a l i d  model, 

cons i s t ing  only of p a r a l l e l  s l o t s ,  may thus be used i n  obtaining 

the  a r r ay  pa t te rn .  The simultaneous equations represent ing the  model 

of p a r a l l e l  s l o t s  form a 72 x 72 matrix,  which may be solved t o  y i e l d  

t h e  terminal vol tage of each s lo t .  

The f i e l d  p a t t e r n  f o r  an  a r ray  of i d e n t i c a l  elements i s  given 

by t he  product of t h e  f i e l d  p a t t e r n  produced by a s i n g l e  element and 

the  a r r ay  f ac to r .  

w r i t t e n  as 

The f i e l d  pa t t e rn  f o r  an a r r ay  of s l o t s  may be 

N 
j k ( r  - ri) 

E(8,  4) = Kf(8 ,  4) Vie  
J 

i = l  

The normalized f i e l d  p a t t e r n  of each ind iv idua l  source i s  f ( 0 ,  (0) 

and N i s  the  number of elements i n  the  a r ray .  

be determined by geometrical  means from Figure 7 as 

The d is tance  riy may 

r - xi s i n  e cos @ - yi s i n  e s i n  (0 - z cos 8. i r =  i (53) 
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The calculated input voltages t o  the s l o t s  may be of unequal magnitude 

and r e l a t i v e  phase, s o  the array factor must contain the weighting 

function, vi. Thus, the array factor becomes 

using (54), the array factor for any configuration of para l l e l  s l o t s  

may be obtained. 



111. ANALYTICAL EVALUATION 

An a n a l y t i c a l  method has been es tab l i shed  f o r  evaluat ing the  

e f f e c t  of mutual coupling on t h e  p a t t e r n  of any a r r a y  containing 

d ipoles  o r  s l o t s ,  i n  p a r t i c u l a r ,  an a r r ay  containing 36 crossed 

s l o t s .  

order  t o  obta in  the  a r r ay  pa t t e rn  with the  e f f e c t s  of mutual coupling 

included. Obviously these  a f f e c t s  w i l l  vary wi th  beam pos i t i on ,  so  

i f  a t o t a l  ana lys i s  w e r e  t o  be conducted one would have t o  analyze 

each poin t ing  of t he  a r r ay .  The antenna, however, i s  t o  scan the  

Now one must m e r e l y  carry out  the  numerical operat ions i n  

e n t i r e  hemisphere, therefore ,  it i s  imprac t ica l  t o  examine each beam 

pos i t ion .  

must be chosen and s tudied  t o  ye i ld  a reasonable evaluat ion.  

This ind ica t e s  t h a t  a r ep resen ta t ive  set of beam pos i t ions  

The most r ep resen ta t ive  s e t  of beam loca t ions  includes the  one 

most a f f ec t ed  and the  one least a f f ec t ed  by mutual coupling, and a 

f e w  between these  extremes. Obviously, t h e  vertical pos i t i on  w i l l  

be least a f f e c t e d  s ince  no input phase v a r i a t i o n  i s  requi red  about 

t he  cen te r  of t h e  array.  

choose the poin t ing  which exh ib i t s  the  most unsymmetrical phase d is -  

t r i bu t ion .  This occurs near the horizon along the  diagonal of the 

array.  

ings.  

To obtain t h e  o the r  extreme, one should 

These pos i t i ons  were analyzed along wi th  th ree  o ther  point-  

27 



28 

The input phase to the pqth element of the array, where p 

designates the row and q the column, is given by 

(55) 
= (pM + qL) 22.5'. 8Pq 

- -  
M and L may be any integer greater than o r  equal to - 7  and less than cr 

equal to 7 ,  where is less than 7 .  Each beam position of 

the array may be completely defined by L and M. For clarity the 

various pointings of the array to be analyzed will be referred to by 

their values of L and M. These values for the five representative 

pointings are as follows: 

L = O  M = O  

L = O  M - 7  Theoretical Maximum at @ = 90° and 8 = 84O 

L = - 2  M = - 2  Theoretical Maximum at 0 = 45' and 0 = 24O 

L = -3 M = -4  Theoretical Maximum at 4 = 53O and 0 = 45' 

L = -3 M = -6 Theoretical Maximum at 0 = 63O and 8 = 72' 

Theoretical Maximum at Q = Oo and 6 = Oo 

where 8 and Q are shown in Figure 8 .  

With the aid of a computer the voltage t o  each slot has been 

calculated assuming an arbitrary magnitude for the input current of 

.25 ma. These voltages along with the input admittance to each 

element are tabulated in Appendix A for five beam positions. With 



8 
29 

X 

- i  
I 

F i g .  &-A 6 x 6 array of crossed slots. 
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no mutual coupling the  input admittance would obviously be tha t  of 

an  i so la ted  element and i s  

or 

Yll = 1.19 L30.2" mmhos. 

Comparing the above value o f  input admittance t o  those tabulated i n  

Appendix A ind lca tes  the  magnitude and phase of the terminal admittance 

has been af fec ted  i n  each case. 

The voltage of each s l o t ,  neglecting mutual coupling, may be 

given by 

where V 

NOW 

and Ipq are the  voltage and current  t o  the  pqth element. 
P4 

Ipq = .25 Lspqma, 

theref ore 

Vpq = .210 L6pq - 30.2O vol t s .  
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Comparing.this vo l tage  t o  t h e  tabulated values ,  t he  a f f e c t  of 

mutual coupling i s  evident .  Even though the  vol tages  have been 

s i g n i f i c a n t l y  a l t e r e d ,  no conclusions may be made concerning the over- 

a l l  e f f e c t  of t he  coupling on the p a t t e r n  and gain of the a r r ay  a t  

t h i s  point .  

*.- . using i5e tabuiated voltages the array pattern may be obkaained 

from (54). These p a t t e r n s  are shown f o r  each poin t ing  with and without 

t h e  a f f e c t s  of mutual coupling i n  Appendix B. The p o s i t i o n  of t he  

field'rnaximum i n  these  pa t t e rns  i s  not a l t e r e d  s i g n i f i c a n t l y  by 

the  coupling. The magnitude of t he  beam has been s i g n i f i c a n t l y  

a l t e r e d  i n  several rases. It has been decreased i n  most cases, but 

f o r  L = -3, M = -4 and L = -3, M = -6  t he  magnitude i s  increased;  

however, t h e  shape of t he  theo re t i ca l  p a t t e r n  has been maintained i n  

each case. 

The magnitude of the  beam inf luences the  ga in  of t he  a r r ay  necessi-  

t a t i n g  the  eva lua t ion  of the  a r ray  power ga in  f o r  each r ep resen ta t ive  

poin t ing .  It is  a simple matter t o  f ind  t h e  t o t a l  input  power t o  the  

a r r ay  s ince  the  input  vol tage and terminal  admittance of each s l o t  i s  

known. The t o t a l  input  power t o  t h e  a r r a y  may be expressed as 

5 5  

o r  . 5 5  

p=o q=o 
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th  where G is the r e a l  p a r t  of the terminal admittance of the pq 
Pq 

element. 

each point ing using any desired reference.  

Therefore, the power gain of the  a r ray  may be obtained for  

Choosing a s ing le  s l o t  

i n  an i n f i n i t e  ground plane a s  a reference,  one a r r ives  a t  the 

expres s ion ' fo r  the reference power; 

Gll i s  the r e a l  p a r t  of the input admittance to  a s ing le  i so l a t ed  

ha l f  wavelength s l o t .  

re fe rence  antenna necessary t o  y ie ld  the same f i e l d  maximum as  the 

array.  (54), of a s ing le  s l o t  i s  equal 

t o  the  input  vol tage to  the  s l o t .  Therefore, the reference power 

becomes 

The reference power i s  the  power input t o  the 

* 
The weighted &ray fac tor ,  

where F(8, e)- i s  the k i n i u m  value of the weighted a r ray  fac tor .  

Thus, the power gain of the array becomes 
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Having the  above expression f o r  power gaitl, the gain of the a r ray  

with no mutual coupling included may be derived. To obta in  t h i s  gain,  

l e t  Vs be the magnitude of the  input vol tage t o  each s l o t .  

p a t t e r n  maximummay be obtained from (54) and equals 36 Vs. 

t h e  reference power becomes 

The a r r a y  

Thus, 

2 
Pref = 136 V,I G ~ ~ .  

The t o t a l  power t o  the array may be obtained by summing the input 

power t o  the s l o t s  t o  y i e ld ,  

Therefore,  the  a r ray  gain,  neglecting mutual coupling, i s  36. 

The a r r a y  gain with mutual coupling included i s  tabulated i n  

Table 1, i t  i s  seen t o  vary f o r  d i f f e r e n t  beam pos i t ions .  This 

v a r i a t i o n  i s  expected, but when mutual coupling i s  included one 

genera l ly  expects the gain t o  decrease, a s  i s  the  case f o r  three of 

the  point ings.  However, two calculated point ings gave gains g r e a t e r  

than t h a t  of the  idea l ized  array. 

a c t u a l l y  improved the a r ray  pa t te rn .  Since i n  most engineering 

p r a c t i c e s  the  idea l ized  case is usual ly  the  bes t  a t t a i n a b l e  r e s u l t ,  

some means of v e r i f i c a t i o n  is  i n  order  a t  t h i s  po in t .  

I n  these cases mutual coupling has  
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TABLE 1 

THE PWER GAIN OF TEE MODEL ARRAY W I T H  
RESPECT TO AN INDIVIDUAL ELEMENT 

L M Fie ld  Max. Reference Power Array Power Gain 

~ 

0 0 6.18 39.3 m 1.497 f~lw 26.3 

0 -7 5.23 28.2 IUW .912 m 30.9 

-3 -4 9.47 92.5 mw 2.225 mw 41.6 

-3 -6 8.83 80.4 mw 1.355 mw 59.2 

-2 -2 7.27 54.5 mw 1.809 mw 30.1  
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Using l i n e a r  superposi t ion,  the  uncoupled gain w i t h  re fe rence  

t o  a s i n g l e  element of any ar ray  i s  equal t o  the number of elements 

of the  a r ray .  Now i f  fo r  some spacing of a two element a r ray ,  it 

can be shown t h a t  a gain g rea t e r  than two i s  poss ib le  then one could 

more r e a d i l y  accept the  coupled gain f igu res  obtained f o r  t he  36 

element array. Earlier, it was stated, that any general r e s u l t s  

obtained using crossed s l o t s  as antenna elements would hold equal ly  

w e l l  i f  crossed d ipoles  w e r e  the  antenna element. Thus, it w i l l  

s u f f i c e  t o  show t h a t  the  gain of a two element a r r ay  of d ipoles  may 

be g rea t e r  than two. This approach i s  used s ince  the  mutual impedance 

of two d ipoles  as a funct ion of antenna length and spacing i s  tabu- 

l a t e d  i n  var ious texts. 
1 9 3  

The simultaneous vol tage  equations f o r  the  two dipoles  a r e  

Assuming i d e n t i c a l  elements y i e lds ,  Zll = 222 and Z12 = Zzl 

f o r  s impl i c i ty  l e t  Vs = V1 = V2. Therefore Is = I1 = I 2  and thus,  

A l s o  

where 
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zs = Zll + Z12. 

The t o t a l  power t o  the  two elements may be expressed a s  

r 1 
pT = Re pJlI1* + V212*], 

o r  

where R i s  the  real p a r t  o f  Zs. 
S 

The f i e l d  p a t t e r n  of a d i p o l e  i s  propor t iona l  t o  the  cu r ren t  d i s -  

t r i b u t i o n  along the  antenna, s o  t he  weighted a r r ay  f a c t o r  may be given a s  

- jk(r-rl) 
F(0, 0) = Ile + 12e 9 

- j k( r-rl) 

and 

o r  
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The input c u r r e n t  t o  the  reference dipole  necessary t o  y i e l d  the  

s a m e  a r r ay  f a c t o r  maximum 

'ref 

a s  t h e  a r r a y  i s  

The input  vol tage t o  the  reference antenna i s  given by 

where Zll is  the  self  impedance of an  i s o l a t e d  d ipole .  

The reference power i s  expressed as 

o r  

where R i s  the  real  p a r t  o f  Zll. 
11 
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Frau equations ( 6 8 )  and (64) one may d i r e c t l y  ob ta in  the  ga in  of 

t he  a r r ay ;  

R11 

RT 
G = 2- 

or 

R11 
G = 2  

R 1 1  + R12 

If the  mutual coupl ing i s  assumed t o  be neg l ig ib l e  then the  ga in  i s  

two. This corresponds t o  t h e  number of elements. Also, i f  the  ga in  

i s  to be g r e a t e r  than two, RI2 must be negative.  

R12 may be negat ive f o r  various spacings.  

g a i n  of an antenna a r ray  may d e f i n i t e l y  be g rea t e r  than t h a t  of t h e  

uncoupled case.  

Figure 9 shows t h a t  

Thus, t he  coupled 

This j u s t i f i e s  t he  previously obtained r e s u l t .  
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IV. CONCUiSIONS 

The a r r a y  pa t t e rns  obtained ind ica t e  t h a t  t h e  a r r ay  cons i s t s  of 

enough elements such t h a t  many of t he  i n t e r i o r  elements have essen- 

t i a l l y  the  same terminal admittance, and thus ,  produce t h e  des i red  

p a t t e r n .  For smaller ar rays  t h i s  i s  not t h e  case and the  beam 

may not  be properly s teered.  A four  element a r r ay  of crossed s l o t s  

w a s  b r i e f l y  examined. The r e s u l t s  d e f i n i t e l y  ind ica ted  an undesirable  

inf luence  of mutual coupling on t h e  a r r ay  pa t t e rn .  

The gain  of t he  a r r ay  was  shown t o  vary throughout the hemisphere 

due t o  t he  coupling between elements. 

normally not  des i rab le .  However, t he  worst  case analyzed d id  not 

reduce the  a r r ay  ga in  more than two decibe ls  wi th  respec t  t o  the  

uncoupled case.  This small va r i a t ion  may e a s i l y  be to le ra ted .  Thus, 

i t m a y  be concluded t h a t  the mutual coupling between the crossed 

s l o t s  w i l l  not s i g n i f i c a n t l y  impair t h e  scanning c a p a b i l i t i e s  of the  

a r ray .  

This v a r i a t i o n  of ga in  i s  

40 
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APPENDIX A 

The tabulated results of the solutions to the simultaneous 

equations representing the current and voltages of the slots are 

presented in this Appendix. 

c 
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TABLE A - 1  

T,yE 'TEPXXAL iDLTMX AM) RDMITTANCE OF THE 36 ETLEM13T MODEL 
ARRAY OF PARALLEL SLOTS FOR L = 0 AND M = 0 

ELEMENT INPUT CURRENT TERMINAL VOLTAGE TERMINAL ADMITTANCE 
'riaga. Phase mgn . Phase mgn * ?h.-ase PQ 

00 
0 1  
02 
03 
04 
05 
10 
11 
12 
13 
14 
15 
20 
2 1  
22 
23 
24  
25 
30 
31 
32 
33 
34 
35 
40 
41 
42 
43 
44 
45 
50 
51 
52 
53 
5r; 
55 

0 
.25 ma 0.0 
.25 
.25 
.25 
.25 
.25 
-25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 - 25 
-25 
.25 
-25 
.25 
.25 
.25 
.25 
.25 
-25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 

.25 
3 f  * -4 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0; 0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0, 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
n:n 
0.0 

.145 v 1.9 

.179 
-164 
.162 
.174 
-186 
-180 
.202 
.178 
-177 
-199 
-175 
.164 
.177  
.161 
.162 
.177  
.161  
-160 
.178 
.162 
'. 1 6 1  
.177  
.163 
,178 
.199 
.177 
.178 
.202 
,179 
,189 
.170 
.163 
-163 

1 R n  

.145 

. _"" 

8.8 
10.7 
6.9 

15.3 
-5.7 
8.8 

24.6 
22.7 
20.7 
25.4 
15.4 
10.5 
22.8 
1 7 . 1  
16.6 
20.5 
6.7 
7 . 1  

20.7 
16.3 
17.2 
22.5 
11.3 
17.5 
26.0 
20.4 
22.9 
24.7 

8.6 
-2.7 
15.9 
6.4 

11.0 
8.7 
2.0 

1.73 mmhos 
1.39 
1.52 
1.54 
1.43 
1.34 
1.39 
1.24 
1.41 
1.42 
1.25 
1.43 
1.52 
1.41 
1.55 
1.54 
1 .41  
1.55 
1.56 
1.40 
1.55 
1.55 
1.41 
1.54 
1.41 
1.26 
1.42 
1.41 
1.24 
1.40 
1.33 
1.47 
1.53 
1.53 
1-39 
1.73 

-1.9 
-8.8 

-10.7 
-6.9 

-15.3 

-8.8 
-24.6 
-22.7 
-20.7 
-25.4 
-15.4 
-10.5 
-22.8 
-17 .1  
-16.6 
-20.5 

-6.7 
-7 .1  

-20.7 
-16.3 
-17.2 
-22.5 
-11.3 
-17.5 
-26.0 
-20.4 
-22.9 
-24.7 

-8.6 

-15.9 
-6.4 

-11.0 
-8 - 7 
-2.0 

5 . 7  

2.7 
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TABLE A- 2 

THE!lzmrwL I ?QLT!-GE -AND P m I m C E  OF THE 36 E- MODEL 
ARRAY OF P U L E D  SLOTS FOR L = 0 and M = -7 

ELEMENT INPUT CURRENT TERMINAL VOLTAGE TERMINAL ADMITTANCE 

P4 Magn. P h a s e  Magn . Phase  Magn . Phase 

00 
01 
02 
03 
04 
05 
10 
11 
12 
13 
14 
15 
20 
2 1  
21  
23 
24  
25 
30 
31 
32 
33 
34 
35 
40 
41 
42 
43 
44 
45 
50 
51 
52 
53 
54 
55 

.25 ma  0 .0  

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 
- 2 5  
.25 
.25 
.25 
-25  
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 

.25 

.25 

* E  . & A  

0.0 
0.0 
0.0 
0.0 
0.0 

-157.5 
-157.5 
-157.5 
-157.5 
-157.5 
-157.5 
-315.0 
-315.0 
-315.0 
-315.0 
-315.0 
-315.0 
-112.5 
-112.5 
-112.5 
-112.5 
-112.5 
-112.5 
-270.0 
-270.0 
-270.0 
-270.0 
-270.0 
-270.0 

-67.5 
-67.5 
-67.5 

-67.5 
-67.5 

-17  r; 
- " I  .a 

.272 V 

.235 

.227 

.232 

.233 

.181 

.211 

.198 
,198 
,198 
.201 
.198 
.169 
.143 
,150 
.156 
.157 
,176 
,142 
. l l O  
. lo4 
.115 
,128 
,153 
.114 
.os9 
,087 
,087 
,101 
,131 
.093 
.079 
.072 
: 068 
,079 
.113 

-37.4 
-23.9 
-28.2 
-27.8 
-31.6 
-41.8 
152.2 
155.4 
160.7 
157.8 
155.1 
137.1 
-4.8 

-11.3 
-5.4 
-4.7 

-10.5 
-32.0 

-158.6 
-168.8 
-161.4 
-160.8 
-166.9 

165.9 
48.2 
41.8 
47.2 
52.2 
46.2 
12.8 

-93.7 
-93.2 
-96.3 
-94.6 
-87.4 

-127.7 

.92 d o s  
1.07 
1.10 
1.08 
1.07 
1.38 
1.19 
1.26 
1.26 
1.26 
1.25 
1.26 
1.48 
1 . 7 5  
1.67 
1.60 
1.59 
1.42 
1.76 
2.27 
2.40 
2.17 
1.96 
1.63 
2.20 
2.80 
2.86 
2.87 
2.48 
1.90 
2.70 
3.16 
3.45 
3.66 
3.18 
2.21 

0 
37.4 
23.9 
28.2 
27.8 
31.6 
41.8 
50.3 
47.1 
41.9 
44.7 
47.4 
75.4 
49.8 
56.4 
50.4 
49.7 
55.5 
77.0 
46.1 
56.3 
48.9 
48.3 
54.4 
81.6 
41.8 
48.2 
42.8 
37.8 
43.8 
77.2 
26.2 
25.7 
28.8 
27.1 
19.9 
60.2 
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I 
I 
I 
I 
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TABU3 A-3 

THE TEWNAL VGLTAGE ADMIm&-CE GF THE 36 E-Ll!"T MODEL 
ARRAY OF PARALLEL SLOTS FOR L = -2 and M = -2 

ELEMENT mPuT CURRENT TERMINAL VOLTAGE TERMINAL ADMITTANCE 

Pq Magn. Phase  -gn. P h a s e  P h a s e  
CCClpled 

00 
0 1  
02 
03 
04 
05 
10 
11 
12 
13 
14 
15 
20 
2 1  
22 
23 
24 
25 
30 
31 
32 
33 
34 
35 
40 
41 
42 
43 
44 
45 
50 
51 
52 
-- 5.3 

54 
55 

.25 ma 0 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 
- 3 5  

.25 

.25 

- -- 

-45 - 90 - 135 - 180 
-225 
-45 
-90 - 135 - 180 

-225 
-270 

-90 - 135 - 180 
-225 
-270 
-3 15 - 135 

-225 
-270 
-3 15 

0 - 180 
-225 
-270 
-3 15 

0 
-45 

-225 
-270 
-315 

n 
-45 
-90 

- 180 

.227 v 3.2 

.227 

.222 

.224 

.254 

.198 
226 

.182 

.201 

.201 

.226 

.141 

.221 

.203 

.220 

.221 

.242 

.170 

.222 

.202 

.227 

.218 

.233 

.156 

.246 
a 231 
.239 
.231 
.244 
.162 
.195 
.138 
.171  
I156 
.161 
.115 

-32.9 
-83.4 

-123.0 
-175.8 

121.5 
-32.8 
-73.3 

-120.3 
-161.4 

143.4 
88.5 

-83.1 
-120.3 
-165.8 

149.1 
95.3 
41.4 

-123.7 
-161.1 

149.0 
106.6 
50.6 
-5.0 

-176.4 
143.8 
95.9 
50.3 

0.2 
-52.2 
125.3 
87.3 
41.4 
-4.3 

-52.2 
-97.2 

1.10 mmhos -3.2 
1.10 
1.13 
1.11 
0.98 
1.26 
1.11 
1.38 
1.24 
1.24 
1.10 
1.77 
1.13 
1.23 
1.14 
1.13 
1.03 
1.47 
1.13 
1.23 
1.09 
1.14 
1.07 
1.60 
1.01 
1.08 
1.05 
1.08 
1.02 
1.54 
1.28 
1.82 
1.46 
1.60 
1.55 
2.17 

-12.1 
-6.6 

-12.0 
-4.2 
13.5 

-12.2 
-16.7 
-14.2 
-18.5 

-8.4 
1.5 

-6.9 
-14.7 - 14.2 
-14.1 

-5.3 
3.6 

-11.3 
-18.9 
-14.0 
-16.6 

-5-6 
5.0 

-3.6 
-8.8 
-5.9 
-5.3 
-.2 
7.2 
9.7 
2.7 
3.6 
4.3 
7.2 
7.2 
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TABLE A-4 

E L E " I  INmpT CURRENT TERMINAL VOLTAGE TERMINAL ADMITTANCE 

Pq Magn. P h a s e  Maw- P h a s e  Magn- P h a s e  

00 
01 
02 
03 
04 
05 
10 
11 
la 
13 
14 
15 
20 
2 1  
22 
23 
24 
25 
30 
31 
32 
33 
34 
35 
40 
41 
42 
43 
44 
45 
50 
51 
52 
53 
54 
55 

.25 ma  0.0 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 
-25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.25 
.2; 
.25 
.25 

-67.5 
-135.0 
-202.5 
-270.0 
-337.5 
-90.0 

-157.5 
-225.0 
-292.5 

0.0 
-67.5 

-180.0 
-247.5 
-315.0 

-22.5 
-90.0 

-157.5 
-270.0 
-337.5 

-45.0 
-112.5 
-180.0 
-247.5 

0.0 
-67.5 

-135.0 
-202.5 
-270.0 
-337.5 
-90.0 

-157.5 
-225.0 

0.0 
-67.5 

301) I; 
- L J L .  2 

.376 v -12.0 

.333 

.357 

.355 

.318 

.212 

.330 

.316 

.304 

.313 

.283 

.152 

.362 

.303 

.297 

.297 

.268 

.130 

.365 

.318 

.308 

.306 

.291 

.159 

.316 

.276 

.257 

.274 

.268 

.160 

.199 

.156 

.149 

.172 

.098 

1 LL . I"" 

-78.2 
-147.3 

140.5 
66.3 
-5.6 

-100.6 
-177.6 

117.2 
45.8 

-31.6 
-110.2 

170.3 
95.9 
29.8 

-39.0 
-115.8 

172.6 
74.5 
2.9 

-60.8 
-129.0 

156.0 
86.3 

-21.8 
-96.0 

-159.9 
135.7 
60.2 

-10.1 
-113.2 

175.8 
117.5 
-- 53,h 

-24.3 
-93.1 

.66 d o s  12.0 

.75 

.70 

.70 

.79 
1.18 

.76 

.79 

.82 

.80 

.88 
1.64 

.69 

.83 

.84 

.84 

.93 

.19 

.68 

.79 

.81 

.82 

.86 
1.58 

.79 

.91 

.97 

.91 

.93 
1.56 
1.26 
1.60 
1.68 
1.51 
1.45 
2.54 

10.7 
12.3 
17.0 
23.7 
28.1 
10.6 
20.1 
17.8 
21.7 
31.6 
42.7 

9.7 
16.6 
15.2 
16.5 
25.8 
29.9 
15.5 
19.6 
15.8 
16.5 
24.0 
26.2 
21.8 
28.5 
24.9 
21.8 
29.8 
32.6 
23.2 
26.7 
17.5 
13,9 
24.3 
25.6 



47 

TABLE: A-5 

THE TERMINAL VOLTAGE AND ADMITTAXE O F  I"rzE 36 EIEHEXT MODEL 
ARRAY O F  PARALLEL SLOTS FOR L = -3  and M = -6  

ELEMENT INPUT CURRENT TERMINAL VOLTAGE TERMINL  ADMITTANCE 

P4 Map. Phase Maw- Phase Maea- Phase 
Coupled 

00 
01 
02 
03 
04 
05 
10 
11 
12 
13 
14 
15 
20 
21 
22 
23 
24 
25 
30 
31 
32 
33 
34 
35 
40 
41 
42 
43 
44 
45 
50 
51 
52 
53 
54 
55 

.25 ma  0.0 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

-67.5 
-135.0 
-202.5 
-270.0 
-337.5 
-135.0 
-202.5 
-270.0 
-337.5 

-45.0 
-112.5 
-270.0 
-337.5 

-45.0 
-112.5 
-180.0 
-247.5 

-45.0 
-112.5 
-180.0 
-247.5 
-315.0 
-22.5 

-180.0 
-247.5 
-315.0 

-22.5 
-90.0 

-157.5 
-315.0 

-22.5 
-90.0 

-157.5 
-225.0 
-292.5 

.39 v 

.32 

.33 

.32 

.29 

.20 

.36 

.34 

.32 

.31 

.29 

.19 

.34 

.33 

.31 

.29 

.27 

.17 

.32 

.30 

.29 

.26 

.24 

.14 

.28 

.24 

.23 

.22 

.20 

.ll 

.19 

.15 

.14 

.14 

.07 

1 1, 
.&-I. 

-44. go 
-117.0 

177.0 
108.1 
39.5 

-24.6 
174.5 
100.8 
31.6 

-34.3 
-103.5 
-179.8 

43.9 
-36.9 

-104.9 
-173.5 

119.1 
37.9 

-89.4 
-169.0 

120.5 
51.3 

-18.0 
-104.2 

146.4 
63.0 
-8.8 

-77.6 - 147.9 
125.5 
24.7 

-45.9 
-115.1 
175 I 7 
102.8 

17.7 

.64 

.78 

.75 
I77  
.86 

1.26 
.70 
.73 
.79 
.80 
.86 

1.32 
.74 
.77 
.82 
.87 
.94 

1.49 
.78 
.83 
.87 
.95 

1.03 
1.74 

.89 
1.02 
1.10 
1.16 
1.25 
2.24 
1.29 
1.61 
1.75 
1.75 
1.73 
3.60 

44. go 
49.5 
48.0 
49.4 
50.5 
47.1 
50.5 
56.7 
58.4 
56.8 
58.5 
67.3 
46.1 
59.4 
59.9 
61.0 
60.9 
74.6 
41.4 
56.5 
59.5 
61.2 
63.0 
81.7 
33.6 
49.5 
53.8 
55.1 
57.9 
77.0 
20.3 
23.4 
25.1 
26.8 
32.2 
49.8 
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APPENDIX B 

The following figures i l lustrate the e f fect  of mutual coupling 

on the array pattern of the 36 element model array. 

1 
48 
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I Fig.  B-1--The elevation pattern for the 6 x 6 model antenna 

array with L = 0 ,  M = 0. ( @  = 90°) 
Polx Chat  &I^ 17'- 
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Fig. B-Z--The elevation pattern for the 6 x 6 model antenna 
array with L = 0 ,  M = - 7. ( b  = 90') 
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(6 = 84O) 
Fig. B3--The azimuth array pattern fo r  the 6- x 6 model antenna 

array with L = 0 ,  M = - 7. 
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B&-The elevation paitern for 
L = - 2, M = - 2 .  (0 = 45') 

the 6 x 6 model antenna 
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Fig. 
array with c .>. 

W a r  Chart No. 127L 
XIENTIFIC-ATLAN ;A. :a<:. 
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I 
B-S--The azimuth array pattern for the 6 x 6 model antenna 
L = - 2,  M = - 2. (e = 2 4 O )  
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Fig. 
array with 

B6--The elevation pattern I for the 6 x 6 model ante- 
L = -3 ,  M = - 4 .  (+ = 53O) 
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Fig. &7--Theazimuth array pattern for the 6 x 6 model antenna 
array with L = - 3,  M = - 4 .  ( 9 = 45') 
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Fig .  
array with 

Polar Chart No. 127i 
SCIENTIFIC-ATI $>!Tk. z ' . , : .  
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BB--The elevation pattern for the 6 x 6 model antenna 
L = - 3 ,  M = - 6. ( @  = 63O) 
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B-9--The azimuth array pattern for the 6 x 6 model antenna 
L = - 3,  M = - 6 .  (e = 72') 
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II APPENDIX c 

The following Fortran source programs were used to  obtain the 

numerical re su l t s  presented i n  the body of t h i s  report. 
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SOURCE PROGRAM 1 

MUTUAL ADMIT-EWCE BElXEEN PARALLEL SLOTS 

The following two programs yield the mutual admittances for all 

combinations of b and d, the quantities shown in Figure 2 ,  that appear 

in the 6 x 6 array of parallel slots. 

is the spacing between each element, SPACE, and the length of the slot, 

H in wavelengths. In these programs SPACE = .44 and H = .5. The 

output yields G ,  where G is the real part of the mutual admittance, 

and S ,  the imaginary part, with b and d as parameters. 

The input data to each program 
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SOURCE PROGRAM 2 

THE SOLUTION CIF TKE SL%XTAXX!US CTJREEm EQTJATIONS FOR THE 
36 ELEMENT ARRAY OF PARAUEL SLOTS 

The following program y ie lds  the  vol tage t o  each s l o t  of t he  36 

element a r r ay  of p a r a l l e l  slots. 

i s  C y  where C is  the  cu r ren t s  applied t o  each s l o t ,  and Y ,  the  mutual 

admittances ca l cu la t ed  i n  the  previous program. 

a r e  read i n t o  the  program i n  matr ix  form as  shown i n  equation (51). 

The output gives  the terminal  vo l tage ,  V,  and phase, PHASE, of each 

element i n  t h e  a r ray .  

The input  da t a  f o r  the  program 

These q u a n t i t i e s  

62 
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SOURCE PROGRAM 3 

ARRAY FACTOR 

This program may be used t o  p l o t  t h e  a r r ay  p a t t e r n  g,ven i n  

equat ion  j54j. 

o r  azimuth angle ,  T 1  and P respec t ive ly .  The input  da ta  includes the  

r e l a t i v e  p o s i t i o n  of each element i n  rec tangular  coordinates ,  X(I), 

y(I) ,  Z(1). The r e l a t i v e  amplitude, T ( I ) ,  and phase, G(I), of 

each element i s  a l s o  requi red ,  along wi th  the  wavelength of the  pro- 

pogated s i g n a l ,  C. The output y i e l d s  the  magnitude and r e l a t i v e  

phase of t he  a r r ay  f a c t o r  wi th  the  e l eva t ion  and azimuth angles  as 

parameters. 

Tnis p a t t e r n  may be p l o t t e d  f ~ r  a q  cznstant  elevation 
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D = X ~ I 1 * S I N ~ T l ~ * C O S ~ P ~ + Y ~ I ~ * S I N ~ T l ~ * S I N ~ P ~ + Z ~ I ~ * ~ O S ~ T ~ )  

S=G2(1)+7.*?.14159/C*~ 
A=A+T(I)+CQS(S) 

40 R=R+T(II*SIN(S) 
F=SQRT (A**2+R**2 1 
ANG=ATANZ(B*A) 
T2=180./3.1415*T1 
ANG=180./3.1415*ANG 
P 2=160 / 3 141 5+P 
WRITE(6*50)T2rP?rF*ANG 

G2(1)=7.14159/1RO.*G(I) 

50 F O R M A T ~ ~ X I ~ H T H E T A  =rF8.2*2Xr5HPHI =.F8.2*2X* 
19HPATTERN =*FIS.B~ZXI~HANGLE =rF8.2) 
E=E+ 1 
TF(E.CT.20Q0.1GO T O  7 P  
P=P+nP 
IF(P.LT.6.78117)GO TO ? 5  
TlzTl-DT 
IF(Tl.LT.(-.02))GO TO 7 n  
GO TO 31 

END 
70 STOP 

BFNTRY 
SIBSYS 



SOURCE PROGRAM 4 

THE INPUT POWER TO THE 36 ELEMENT 
ARRAY OF PARALLEL SLOTS 

%is prograa sr;m t h e  pcxer radiated by each zlczeat cf the  a r r ay  

t o  ob ta in  t h e  t o t a l  r a d i a t e d  power. The input  data  i s  C ,  where C is  

t h e  cu r ren t  appl ied t o  each element,and V,  t he  calculated terminal 

vol tage of each s l o t ,  The program y i e l d s  the magnitude and phase of  

t h e  terminal admittance, YM and YAY r e spec t ive ly ,  along with the  t o t a l  

r a d i a t e d  power of  t h e  a r r ay .  
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$JOB 074T HAYES 
SIBJOB 
I1 BFTC 

6 7  

C 
t 

5 

10 
17 

200 
300 
430 
500 

TERMINAL ADMITTANCE AND TOTAL INPUT POWER TO A R R A Y  FOR SPECIFIED 
PC I NT 1 NGS 
I ) I M € N S I O N  C(7795)rV(72,5) 

DO 5 Jz1.5 
DO 5 1 ~ 1 9 7 2  
C ( I Y J ) = C ( I ~ J ) + . ~ ~ F - ~  
"nEir"v 3m.v 
DO 12 Jz1.5 
POW=O.O 
DO 10 I=1,72r2 
N=I+l 
L=N/2 
YM=SQRT((C(IIJ)+*~+C~~~J)**~)/(V(I,J)++Z+V(N~J)**~)) 
Y A = ( A T A N Z ( C ( N I J ) ~ C ( I I J ) ) - A T A N Z ( V ( Y , J ) , V ( I ~ J ) ) ) * ~ E O . / ~ . ~ ~ ~ ~ ~ ~ ~  
PM=YM+(: V (  I ,  J )**2+V [ N, J 1 * *2)  
PA=3.1415927/180.+YA 

R F A D  2 0 0 , ~  

POW=POW+PM*COS(PA) 
WRITE(6.4GO)L,YY,YA 
WRITE(6.GOO)J,POW 
FORMAT(6FlO.O 1 
FORMAT(6E12.7) 
FORMAT(lX*lZHELEMENT NO. gI2,6X*3HY =,E16.793X,7HPHASF =*F12.4) 
FORMAT(lXq9HCASE NO. +I1,3X,3HL =r5X,3HM =,SX,13HTOTAL POWER =. . .  

1 E16.7) 
STOP 
EVD 

BFYTRY 


